
 

Advances and Applications in Mathematical Sciences 
Volume 22, Issue 1, November 2022, Pages 205-213 
© 2022 Mili Publications, India 

 

2020 Mathematics Subject Classification: 05C12, 05C69. 

Keywords: Forcing, detour set, Cototal domination, Detour cototal domination, Forcing detour 

cototal domination. 

Received May 27, 2022; Accepted June 1, 2022 

THE FORCING DETOUR COTOTAL DOMINATION 

NUMBER OF A GRAPH 

S. L. SUMI, V. MARY GLEETA and J. BEFIJA MINNIE  

Research Scholar, Register No.20123042092007 

Department of Mathematics, Holy Cross College 

Nagercoil-629 004, India 

E-mail: sumikrish123@gmail.com 

Assistant Professor, Department of Mathematics 

T. D. M. N. S. College, T. Kallikulam-627 113, India 

E-mail: gleetass@gmail.com 

Assistant Professor, Department of Mathematics 

Holy Cross College, Nagercoil-629 004, India 

Affiliated to Manonmaniam Sundaranar University 

Abishekapatti, Tirunelveli-627 012 

E-mail: befija@gmail.com 

Abstract 

Let S be a detour cototal dominating set of G. A subset SD   is called a forcing subset of S 

if S is the unique minimum detour cototal dominating set containing D. The minimum 

cardinality D is the forcing detour cototal domination number of S and is denoted by ( ),Sf dct  is 

the cardinality of a minimum forcing subset of S. The forcing detour cototal domination number 

of G, denoted by ( ),Sf dct  is ( )  ( ),min SdctfGdctf =  where the minimum is taken over all 

dct -sets S in G. Some general properties satisfied by this concept are studied. It is shown that 

for every pair ba,  of integers with ,2,0  bba  there exists a connected graph G such that 

( ) aGf dct =  and ( ) .bGdct =  Where ( )Gdct  is the detour cototal dominating number of G.  
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1. Introduction 

For a graph ( ),, EVG =  we mean a finite, undirected connected graph 

without loops or multiple edges. The order and size of G are denoted by m 

and n respectively. We consider connected graphs with at least two vertices. 

For basic definitions and terminologies we refer to [2, 7]. For vertices u and v 

in a graph G, the detour distance ( )vuD ,  is the length of a detour distance 

( )vuD ,  is the length of a longest vu −  path in G. A vu −  path of length 

( )vuD ,  is called a vu −  detour. It is known that the detour distance is a 

metric on the vertex set ( ).GV  A subgraph obtained from graph G by vertex 

deletion only is an induced subgraph of G. If X is the set of deleted vertices, 

the induced subgraph is denoted by XG −  with ( ) ,XGVY =  the induced 

subgraph is denoted as  YG  and called the subgraph of G induced by vertex 

set Y. A vertex x is said to lie on a vu −  detour P if x is a vertex of vu −  

detour path P including the vertices u ad v. A set ( )GVS   is called a detour 

set of G if every vertex v in G lies on a detour joining a pair of vertices of S. 

The closed detour interval  vuID ,  consists of vu,  and all vertices in some 

vu −  detour of G. For ( )     ( ).,, , GVvuISIGVS DSvuD ==   A subset S 

of V of a graph G is called a detour set if   ( ).GVSID =  detour number ( )Gdn  

of G is the minimum cardinality taken over all detour sets in G. These 

concepts were studied by Chartrand [5, 6.10]. A set ( )GVS   is called a 

dominating set if every vertex in ( ) SGV −  is adjacent to at least one vertex 

of S. The domination number, ( ),G  of a graph G denotes the minimum 

cardinality of such dominating sets of G. A minimum dominating set of a 

graph G is hence often called as a -set of G. The domination concept was 

studied in [8]. A dominating set S of G is a cototal dominating set if every 

vertex SVv \  is not an isolated vertex in the induced subgraph .\ SV  

The cototal domination number ( )Gct  of G is the minimum cardinality of a 

cototal dominating set. The cototal domination number of a graph was 

studied in [11, 12,]. A set VS   is said to be a detour cototal dominating set 

of G, if S is both detour set and cototal dominating set of G. The detour 

cototal domination number of G is the minimum cardinality among all detour 
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cototal dominating sets in G and denoted by ( ).Gdct  A detour cototal 

dominating set of minimum cardinality is called the dct -set of G. The detour 

cototal domination number of a graph was studied in [9,]. The following 

theorems are used in the sequel. 

Theorem 1.1 [10]. Every end vertex of G belongs to every detour 

dominating set of G. 

Theorem 1.2 [10]. For the non-trivial tree, ( ) ,kGdct =  where k is the 

number of end vertices of G. 

2. The Forcing Detour Cototal Domination Number of a Graph 

Even though every connected graph contains a minimum detour cototal 

dominating sets, some connected graph may contain several minimum detour 

cototal dominating sets. For each minimum detour cototal dominating set S 

in a connected graph there is always some subset T of S that uniquely 

determines S as the minimum detour cototal dominating set containing T 

such “forcing subsets” are considered in this section. The forcing concept was 

studied in [1, 3, 9]. 

Definition 2.1. Let S be a detour cototal dominating set of G. A subset 

SD   is called a forcing subset of S if S is the unique minimum detour 

cototal dominating set containing D. The minimum cardinality D is the 

forcing detour cototal domination number of S and is denoted by ( ),Sf dct  is 

the cardinality of a minimum forcing subset of S. The forcing detour cototal 

domination number of G, denoted by ( ),Sf dct  is ( )  ( ),min SfGf dctdct  =  

where the minimum is taken over all dct -sets S in G. 

Example 2.2. For the graph G of Figure 2.1,  87411 ,,, vvvvS =  and 

       ,,,,,,,,,,,,,,,, 1086259851410861387422 vvvvSvvvvSvvvvSvvvvS ====

     ,,,,,,,,,,,, 9861810851798536 vvvvSvvvvSvvvvS ===  

   986210108529 ,,,,,,, vvvvSvvvvS ==  are the only ten dct -sets of G, 

such that ( ) ( ) 221 ==  SfSf dctdct  and ( ) 3= idct Sf  for .103  i  So that 

( ) 2= Gf dct  and ( ) .4= Gdct  
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Figure 2.1. 

The following result follows immediately from the definitions of the 

detour cototal domination number and the forcing detour cototal domination 

number of a connected graph G. 

Theorem 2.3. For every connected graph ( ) ( ).0, GGfG dctdct    

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the Star graph 

( ) ( )GVSnKG n == − ,3,1,1  is the unique dct -set of G so that 

( ) .0= Gf dct  Also for the Cycle 4CG =  with ( )  ,,,, 4321 vvvvGV =  

 211 , vvS =  and      144433322 ,,,,, vvSvvSvvS ===  are the only four 

dct -sets of G, such that ( ) ( ) .2== GGf dctdct  Also the bounds in Theorem 

2.3 can be strict. For the graph G given in Figure 2.1, ( ) 4= Gdct  and 

( ) .2= Gf dct  Thus ( ) ( ).0 GGf dctdct    

Theorem 2.5. Let G be a connected graph. Then 

(a) ( ) 0= Gf dct  if and only if G has a unique minimum dct -set. 

(b) ( ) 1= Gf dct  if and only if G has at least two minimum dct -sets, one of 

which is a unique minimum dct -set containing one of its elements and 

(c) ( ) ( )GGf dctdct =  if and only if no dct -set of G is the unique minimum 

dct -set containing any of its proper subsets. 

Definition 2.6. A vertex v of a connected graph G is said to be a detour 

cototal dominating vertex of G if v belongs to every dct -set of G. 

Example 2.7. For the graph G given in Figure 2.2,  ,,, 7411 vvvS =  
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 7422 ,, vvvS =  and  7433 ,, vvvS =  are the only three dct -sets of G, such 

that  74, vv  is the set of all detour cototal dominating vertices of G. 

 

Figure 2.2. 

Remark 2.8. Every end vertex of G is a detour cototal dominating vertex 

of G. Infact there are detour cototal dominating vertices which are not end 

vertices of G, For the graph given in Figure 2.2, 4v  is a detour cototal 

dominating vertex of G, which is not an end vertex of G. 

Theorem 2.9. Let G be a connected graph and W be the set of all detour 

cototal dominating vertices of G. Then ( ) ( ) .WGGf dctdct −  

Remark 2.10. The bounds in Theorem 2.9 is sharp. For the graph G 

given in Figure 2.2, ( ) 3,2 == GW dct  and ( ) .1= Gf dct  Thus 

( ) ( ) .WGGf dctdct −=  Also the bounds in Theorem 2.9 is strict, for the 

graph G given in Figure 2.1, .3=W  ( ) 4= Gdct  and ( ) .2= Gf dct  Thus 

( ) ( ) .WGGf dctdct −=  

Theorem 2.11. For the complete bipartite graph ( ),1, srKG sr =  

( )






=
=

.2,2

2,1,0

srif

srif
Gf dct  

Proof. For 1=r  and ( )GVSs = ,2  is the unique dct -set of G so that 

( ) .0= Gf dct  Let  ruuuU ,,, 21 =  and  swwwW ,,, 21 =  be the 

bipartite sets of G. Let Uu   and .Ww   Then  wuS ,=  is a unique dct -
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set of G. Since ( ) .2,2   Gfr dct  Since this is true for all Uu   and 

SWw ,  is not a unique dct -set of G containing u or w. Therefore, 

( ) .2= Sf dct  Since this is true for all dct -sets of ( ) .2, = GfG dct   ■ 

Theorem 2.12. For the wheel graph ( ) ( ) .1,511 =+= − GfnCKG dctn  

Proof. Let x be the central vertex of G and 1−nC  be .,,,, 1121 vvvv n−  

Then   ( )11, −= nivxS ii  is a dct -set of G such that 

( ) ( )111 −= niSf idct  so that ( ) .1= Gf dct  ■  

Theorem 2.13. For the Fan graph, ( ) ( ) .1,511 =+= − GfnPKG dctn  

Proof. Let ( )  xKV =1  and ( )  .,,, 1211 −− = nn vvvPV   Then 

 11 , vxS =  and  12 , −= nvxS  are the only two a dct -sets of G such that 

( ) ( ) .121 ==  SfSf dctdct  So that ( ) .1= Gf dct  ■  

Theorem 2.14. For the helm graph ( ) ,0, ==  GfHG dctr  for .6n  

Proof. Let S be the set of end vertices and the cut vertices of G. Then S is 

the unique dct -set of G so that ( ) .0= Gf dct  ■ 

Theorem 2.15. For the graph ( ) .1,1,1 =+= + GfeKG dcta  

In view of Theorem 2.3, we have the following realization result. 

Theorem 2.16. For every pair ba,  of integers with ,2,0  bba  

there exists a connected graph G such that ( ) aGf dct =  and ( ) .bGdct =  

Proof. For ,2,0 = ba  let .1,1 −= aKG  Then by Theorem 1.2 and 2.11, 

( ) bGdct =  and ( ) .aGf dct =  So, let .2 ba   

Case (i). .2 ba =  

Let ( )aivuP iii 1,:  be a path with three vertices. Let G be a graph 

obtained from ( )aiPi 1  by introducing a vertex x and joining x with each 

( ).1, aivu ii   The graph G is given in Figure 2.3. 
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Figure 2.3 

First we prove that, ( ) .aGdct =  It is easily observed that every dct -set 

of G contains at least one vertex from each component of xG −  and so 

( ) .aGdct   Let  .,,, 21 avvvS =  Then S is a dct -set of G so that 

( ) .aGdct =  Next we prove that ( ) .aGf dct =  By Theorem 2.3, ( ) .aGf dct   

Let  ( ).1, aivuH iii =  Then every dct -set of G contains at least one 

vertex from each ( ).1 aiHi   Therefore every dct -set of S is of the form 

 aCCCS ,,, 21 =  where ( ).1 aiHC ii   Since this is true for all dct -

set of ( ) ., aGfG dct =  

Case (ii). ba 2  

Let yxP ,:  be a path on two vertices and ( )aivuP iii 1,:  be a copy 

of path on two vertices. Let H be a graph obtained from P and ( )aiPi 1  

by joining x with each iu  and ( ).1 aivi   Let G be the graph obtained from 

H by introducing new vertices abzzz −,,, 21   and joining y with each 

( ).1 abivi −  The graph G is shown in Figure 2.4. 
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Figure 2.4 

First we prove that, ( ) .bGdct =  Let  abzzzZ −= ,,, 21   be the set of 

end vertices of G. By Theorem 1.1, Z is a subset of every detour cototal 

dominating set of G. Let  ( ).1, aivuH iii =  Then it is easily observed 

that every detour cototal dominating set contains at least one vertex from 

each ( )aiHi 1  and So that, ( ) .bbabGdct =+−  Let 

 .,,, 21 auuuZS =  

Next we prove that ( ) .aGf dct =  Since every detour cototal dominating 

set contains z, It follows from Theorem 2.9, ( ) ( ) ZGGf dctdct −  

( ) .aabb =−−=  Now since ( ) bGdct =  and every dct -set of G contains Z, 

it is easily seen that every dct -set of G is of the form  acccZS ,,, 21 =  

where ( ).1 aiHC ii   Let T be any proper subset of S with .aT   

Then there exist an edge ( )ajej 1  such that .Te j   Let jf  be an edge of 

iH  distinct from .je  Then (  )  jj feSW −=  is a detour cototal 

dominating set of G properly containing T. Thus W is not the unique dct -set 

containing T. Thus T is not the forcing subset of S. This is true for all 

minimum detour cototal dominating sets of G and so it follows that 

( ) .aGf dct =  

Conclusion 

In this paper we studied the concept of forcing detour cototal domination 

number of graph. In future studies, this same concept is applied for the other  

graph operations.  
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